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We measure the transmission and reflection amplitudes of microwaves in a resonator coupled to two anten-
nas at room temperature in the regime of weakly overlapping resonances and in a frequency range of
3–16 GHz. Below 10.1 GHz the resonator simulates a chaotic quantum system. The distribution of the ele-
ments of the scattering matrix S is not Gaussian. The Fourier coefficients of S are used for a best fit of the
autocorrelation function of S to a theoretical expression based on random-matrix theory. We find very good
agreement below but not above 10.1 GHz.
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Chaotic quantum scattering occurs when Schrödinger
waves are scattered by a system with chaotic classical dy-
namics. For time-reversal invariant chaotic systems, the
spectral fluctuations of the eigenvalues coincide �1� with the
predictions of the Gaussian orthogonal ensemble �GOE� of
real and symmetric random matrices. The eigenvalues mani-
fest themselves as resonances with average spacing D and
average width �. The theory of chaotic scattering has been
largely developed in the framework of nuclear reaction
theory �2�. Predictions of the theory have been thoroughly
tested both in the regime of isolated resonances ���D� �3�
and in the Ericson regime ���D� �4�, especially in the con-
text of nuclear physics �5�, but also in several other areas of
physics �6�. In contradistinction, we are not aware of any
thorough investigation of chaotic scattering in the regime of
weakly overlapping resonances that would comprise all com-
plex reflection and transmission elements of the scattering
matrix. In this Rapid Communication, we present data in that
regime and compare these with theoretical predictions.

We use a microwave cavity made of copper coupled to
two antennas and measure the response to an external field as
a function of radio frequency f . The microwave cavity has
the shape of a tilted stadium billiard �7�; see the inset of Fig.
1. The dynamics of the classical stadium billiard is chaotic.
The tilted shape was used in order to avoid bouncing-ball
orbits between parallel walls. The height of the cavity is
14.6 mm. For frequencies f � fmax=10.1 GHz, only a single
vertical mode in the microwave cavity is excited. In that
regime, the cavity simulates a two-dimensional chaotic quan-
tum system and is a microwave billiard �8�. The experiment
is performed at room temperature, with Ohmic losses at the
walls of the cavity. A vector network analyzer couples mi-
crowave power in and out of the resonator via either one or
both antennas and yields the complex elements Sab�f� of the
symmetric scattering matrix, where a ,b=1,2. The range
3 GHz� f �16 GHz was covered in steps of �=250 kHz in
reflection measurements �yielding S11�f� and S22�f�� and of
�=100 kHz in transmission measurements �yielding S12�f��.
Figure 1 gives examples of the measured transmission and
reflection intensities.

Figure 2 shows histograms of the distribution of S-matrix
elements in two frequency intervals. The distribution of
Re�S11� is strongly peaked near 1, especially for the lower

interval, and obviously not Gaussian. The distributions of
Im�S11� and Re�S12� deviate from Gaussians �solid lines�.
The distributions of the phases �rightmost panels� are
peaked.

We use the data to construct the S-matrix autocorrelation
functions Cab���=Sab�f�S

ab
* �f +��− �Sab�f��2 for a ,b=1,2.

The overbar denotes an average over a frequency window.
Three examples for Cab��� are displayed as points in the two
upper panels of Fig. 3 �data taken below fmax=10.1 GHz�
and in the inset of Fig. 4 �data from above fmax where the
cavity does not simulate a two-dimensional microwave bil-
liard�. The values of the scattering matrix Sab�f� are seen to
be correlated, with a correlation width ��several MHz.
With Sab

fl =Sab−Sab we have also determined the “elastic en-

FIG. 1. Absolute squares of the scattering matrix elements Sab

for signal transmission from antenna 2 to 1 �upper panel� and re-
flection at antenna 1 �lower panel� between 9.0 and 9.5 GHz. On
the logarithmic decibel scale, −x dB means an attenuation of the
microwave power by a factor of 10x/10. The resonances overlap and
create a pattern of fluctuations. Inset: the shape of the two-
dimensional microwave resonator used in the experiment. Points 1
and 2 indicate the positions of the antennas.
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hancement factor” W= ��S11
fl �2 �S22

fl �2�1/2 / �S12
fl �2as a function of

f , both from the autocorrelation functions and from the
widths of the distributions of the imaginary parts of the scat-
tering matrix �Fig. 2�. Both results agree very well and yield

a smooth decrease of W with f from W�3.5�0.7 for 4
� f �5 GHz to W�2.0�0.7 for 9� f �10 GHz. The com-
putation of the enhancement factors based on a theoretical
expression for the S-matrix autocorrelation function intro-
duced below yields the values W=2.8 and W=2.2, respec-
tively. Moreover, we have converted the scattering functions
Sab�f� �measured at M equidistant frequencies with step

width �� into complex Fourier coefficients S̃ab�t� with t�0.
Instead of the Fourier index k we use the discrete time inter-
val t=k / �M�� elapsed after excitation of the resonator. The

Fourier coefficient S̃ab�0� is proportional to Sab�f�. We find

that S̃12�0��0. Any two complex Fourier coefficients S̃ab�t�
of Sab�f� are uncorrelated random variables �9�. For t	0, the

coefficients S̃ab�t� have an approximately Gaussian distribu-
tion about their �t-dependent� mean value �10�. This result is
unexpected and was neither predicted theoretically nor found
experimentally before.

The Fourier transform C̃ab�t� of Cab��� has Fourier coef-

ficients xt= �S̃ab�t��2. In the lower panels of Fig. 3 �in Fig. 4�
we show data for log10C̃ab�t� versus t for two values of �a ,b�
�for �a ,b�= �1,2�, respectively�. The cutoff at t=800 ns in

both figures is due to noise. The S̃ab�t� being nearly Gauss-
ian, the distribution P�yt� of yt=ln xt is expected to have
approximately the form

FIG. 2. From left to right: histograms for the scaled distributions of the real and imaginary parts of the reflection amplitude S11 and the
real part and the phase of the transmission amplitude S12, for the two frequency intervals 5–6 GHz �upper panels� and 9–10 GHz �lower
panels�. The scaling factors are given in each panel. The solid lines are best fits to Gaussian distributions.

FIG. 3. Upper panels: comparison of the autocorrelation func-
tion Cab��� constructed from the data �points� and the fit using Eq.
�2� �solid line�, both normalized by the value of C�0� as given by

Eq. �2�. Lower panels: Fourier coefficients C̃ab�t� of the autocorre-
lation functions �points� and the Fourier transform of the fit of
Cab��� as given by Eq. �2� to the data �solid line�. The elements
S12�f� and S11�f� were taken from the frequency window
9–10 GHz.

FIG. 4. Same as Fig. 3, but for the scattering function S12�f�
taken in the frequency window 12–13 GHz.
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P�yt� = exp�yt − 
t − eyt−
t� , �1�

where 
t=ln x̄t is given by the expectation value of xt. The
maximum of P�yt� is at yt=
t, and P�yt� has a strong skew-
ness due to the exponential within the argument of the expo-
nential, in agreement with the experimental data.

In the regime of weakly overlapping resonances, the only
theory available is due to Verbaarschot, Weidenmüller, and
Zirnbauer �VWZ� �11�. These authors model the scattering
matrix S of a time-reversal invariant system in terms of a
GOE Hamiltonian matrix of dimension N. In the absence of
“direct reactions” �i.e., for S12�E�=0�, the relevant param-
eters of the theory are the “transmission coefficients” Tc=1
− �Scc�f��2, which measure the unitarity deficit of the average
S matrix. Given the Tc, the theory uses the limit N→� to
predict for all values of � /D the S-matrix autocorrelation
function

Cab��� =
1

8
	

0

�

d�1d�2	
0

1

d�
��,�1,�2�Jab��,�1,�2�

� exp�− i����1 + �2 + 2��/D�

� 

c

�1 − Tc��
��1 + Tc�1��1 + Tc�2��1/2 �2�

in terms of the ratio � /D. To simulate Ohmic absorption by
the walls of the cavity, we introduce additional fictitious
channels �12� and associated transmission coefficients Tc
with c=3,4 , . . .. These are defined below. The product over
channels c extends over both the antenna channels and the
ficticious channels. The function Jab�� ,�1 ,�2� depends on
the �’s and on the transmission coefficients Ta and Tb for the
open channels. Both the integration measure 
�� ,�1 ,�2� and
Jab are given explicitly in Ref. �11�. The correlation width �
is actually determined by Eq. �2�, but approximately given
by the “Weisskopf estimate” ���D / �2����cTc. Equation �2�
comprises what is known theoretically in the regime of
weakly overlapping resonances. Higher moments of S are not
known, not to speak of the complete distribution of S-matrix
elements.

Much more is known both for ��D and for ��D. In the
Ericson regime, the distribution of S-matrix elements is
Gaussian; the correlation function Cab��� has Lorentzian
shape, with � given by the Weisskopf estimate �13�; the Fou-

rier transform C̃ab�t� of Cab��� �which describes the decay in
time of the modes in the cavity� is exponential in time; for
Tc�1 �strong absorption� the distribution of the phases of
the Sab is constant. For ��D, on the other hand, the distri-
bution is far from Gaussian. �Consider, for instance, the
single-channel case. The unitarity condition �S�f��=1 con-
fines S�f� to the unit circle. The phase of S�f� increases by
2� over the width of every resonance and is nearly stationary
in between resonances.� The regime ��D interpolates be-
tween these two extremes, and we expect a non-Gaussian
distribution of S�f�. The results in Fig. 2 give experimental
information on that distribution and confirm our expectation.
With decreasing f , the distributions deviate ever more

strongly from Gaussians. As for C̃ab�t�, Eq. �2� predicts a
powerlike decay in time, in striking contrast to the exponen-

tial decay valid for ��D. That prediction has been discussed
and used in Refs. �14� and experimentally tested with micro-
wave resonators in Refs. �12,15�. However, these papers did
not apply any statistical tests based upon a goodness of fit
�GOF� as done below.

We model Ohmic absorption by a large number of absorp-
tive channels with very small transmission coefficient each
�12�. The product in Eq. �2� over absorptive channels is then
replaced by an exponential function of the sum �abs of the
transmission coefficients of these channels, and Cab��� de-
pends on T1, T2, �abs, and D. The Fourier transform was fitted
to the xt data shown in the lower parts of Figs. 3 and 4. We
used Ta=1− �Saa�2 for a=1,2 and calculated the mean level
spacing D from the Weyl formula �16�. This left �abs as the
only free parameter. In order to allow for secular variations
of �abs, the data taken between 3 and 16 GHz were analyzed
in 1-GHz intervals with the help of a maximum-likelihood
fit. We find that the sum T1+T2+�abs increases from 0.11 in
the interval 3–4 GHz to 1.15 in the interval 9–10 GHz. The
resulting increase of �abs is consistent with conductance
properties of copper. Using the Weisskopf estimate, we find
that � /D increases from 0.02 to 0.2 over the same range.
This shows that we deal with weakly overlapping reso-
nances. The results of the fits are shown as solid lines in the
lower two panels of Fig. 3 and in the lower panel of Fig. 4.
For an exponential decay in time, the curves in these panels
should be straight lines. This is clearly not the case. The solid
lines in the upper two panels of Fig. 3 and in the upper panel
of Fig. 4 are the Fourier transforms of the VWZ fits. In Fig.
3 they agree well with the data points, up to small discrep-
ancies which are attributed to finite-range-of-data errors. In
the upper panel of Fig. 4 the discrepancy between fits and
data points is displayed more clearly than in the lower panel.

The quality of the agreement between data and fits in
Figs. 3 and 4 is assessed in terms of a highly sensitive GOF
test �the Fourier coefficients scatter over more than five or-
ders of magnitude�. The fit of Eq. �2� determines the expec-
tation value xt of xt and, thus, 
t=ln xt in Eq. �1�. If the
distribution of the yt were Gaussian, the GOF test would be
defined in terms of �t�yt−
t�2. The appropriate generaliza-
tion for the distribution P�yt� in Eq. �1� is the expression I
��t�exp�yt−
t�− �yt−
t�−1�; see Chaps. 14 and 16 of Ref.
�17�. This quantity is non-negative and vanishes exactly if
the data coincide with the model for all t. For large M, I is
approximately �2 distributed with M degrees of freedom. For
each frequency interval of length 1 GHz, we have M =2400,
since each of the three excitation functions S11�f�, S12�f�, and
S22�f� contributes 800 Fourier coefficients. We admit a 10%
probability for an erroneous decision. The fit using Eq. �2� is
accepted in all intervals below f =10 GHz and is rejected in
all intervals but one above 10 GHz. A similarly thorough and
mathematically reliable test of the theory of chaotic scatter-
ing has not been performed before; see Refs. �12,15�. This
fact motivated our work. We conclude that Eq. �2� is com-
patible with our data as long as the resonator supports only
two-dimensional modes and simulates a chaotic billiard. We
have numerically simulated the fluctuations above 10.1 GHz
under the assumption that the two vertical modes do not
interact and the Hamiltonian matrix is block diagonal, each
block taken from the GOE. In this way we reproduced quali-
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tatively the results of Fig. 4. In the sense that the GOE de-
scribes full chaos, a block-diagonal random matrix repre-
sents additional symmetries. The disagreement between
theory and experiment above 10.1 GHz shows that our test is
sensitive to the existence of such symmetries. We conclude
that, first, in the regime of overlapping resonances, our test is
sensitive to symmetries in a Hamiltonian system and, sec-
ond, that Eq. �2� is compatible with the data as long as the
scattering system is fully chaotic.

We have investigated a chaotic microwave resonator in
the regime of weakly overlapping resonances ��D. The dis-
tributions of S-matrix elements are not Gaussian. In each of
13 frequency intervals we determined 2400 uncorrelated
Fourier coefficients of the elements of the scattering matrix.
Surprisingly, these have nearly Gaussian distributions. The
data were used to test the VWZ theory of chaotic scattering.
The predicted nonexponential decay in time of resonator
modes and the frequency dependence of the elastic enhance-
ment factor are confirmed. Our GOF test is based on a large
number of data points and constitutes the most sensitive test

of the theory of quantum chaotic scattering for weakly over-
lapping resonances performed so far. We show that the VWZ
theory is compatible with the data as long as the resonator
simulates a fully chaotic quantum system. The theory can,
thus, be used with confidence to predict average cross sec-
tions and S-matrix correlation functions. The agreement fails
when a second vertical mode appears. This suggests that our
analysis may serve as a tool to detect symmetries and/or
regular motion within a chaotic system in the regime of over-
lapping resonances.
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